Source Separation and Machine Learning
Download e-Book
Book Introduction
e-Books Highlight
-
Edition1st Edition
-
ISBN0128177969
-
Posted on2018-12-04
-
FormatPdf
-
Page Count384 Pages
-
Author
About the e-Book
Source Separation and Machine Learning Pdf
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning
Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning
Presents a number of case studies of model-based BSS (categorizing them into four modern models – ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems
This site comply with DMCA digital copyright. We do not store files not owned by us, or without the permission of the owner. We also do not have links that lead to sites DMCA copyright infringement.
If You feel that this book is belong to you and you want to unpublish it, Please Contact us .
By Libribook
Java For Testers: Learn Java fundamentals fast
Dynamics 365 CE Essentials